Follow-up Multicenter Alpha Counting Comparison

Jeff Wilkinson, Brett M. Clark, Richard Wong, Yi He, Charles Slayman, Michael Gordon, Jennifer Marckmann, Brendan McNally and Tommy Wu
α particles – Why do they matter?

• Alpha particles are directly ionizing, causing soft errors when striking a cell’s sensitive volume.
• Emitted from packaging or IC materials.
How much material is $2 \alpha / \text{khr/cm}^2$?

- ULA materials require ppb impurity levels
- This includes the cleanliness of all manufacturing processes that could contaminate these materials.
- For ^{210}Po contamination a ULA value of 0.002 cm$^{-2}$ hr$^{-1}$ implies 20 atoms/cm2 which is a few pps (parts per sextillion).

Clark, LBCF workshop, Minneapolis, MN, 2005
• Ionization and proportional counters have similar construction, differing in the detection method and counting gas that is used.
• Large format counters and samples (1000 cm2) are required to achieve reasonable counting times.
• Particles ionize the counting gas and electrons drift to anodes, forming the output pulse for counting.
• Counting efficiencies range from about 80% to 95%.
• Alphas emitted from non-sample locations, count gas impurities, or from cosmic ray secondaries add to the background signal.
• Beta particle (electron) can result in crosstalk signal.
• Typical background rates are similar to ULA emission rates.
Experiment & Samples

- 9 participating centers, varying equipment.
- LA samples are aluminum alloy, ULA is high purity titanium.
- Each center used its own count methodology.

- LA and ULA samples circulated in round-robin to each center for multiple measurements.

Wilkinson et al., Multicenter comparison of alpha particle measurements…, IRPS 2010
Selected LA Results (Round 1)

- Mean emissivity spans more than 2X.

Repeated measurements at a single center agree with each other.

- No evidence of sample instability.

Wilkinson et al., Multicenter comparison of alpha particle measurements..., IRPS 2010
ULA Results (Round 1)

- Large counting uncertainties can mask any differences in mean values or systematic errors in background determination.
- Variation is more extreme than for LA samples.

Wilkinson et al., Multicenter comparison of alpha particle measurements…, IRPS 2010
Conclusions from Round 1

• Alpha emissivity measurements are repeatable at a single lab for LA and ULA sources, within the measurement uncertainty.

• Comparing LA emissivity values between labs is subject to >2X variability.

• Extrapolating LA accelerated test methods to predict soft error rates should be done cautiously.

• A suitable emissivity standard is needed for proper calibration of instruments.
Possible Role of Threshold

- Alphas are created at discrete energies.
- An α traversing a “thick” source (>10 μm) loses energy creating a continuous energy spectrum incident on the counter.

Low energy threshold is set to reject electronic noise and beta emission.

A sample dependent fraction of the low energy alphas will also be rejected.
Purpose – Round 2

Do differences in the low energy thresholds explain the measurement differences observed in Round 1?
Round 2 Samples

- Ceramic sample should duplicate Round 1 results.
- 230Th surface deposited sample will not lose counts to low energy threshold. Emission certified by vendor.
- 9 participants, one lost dataset.
Results from Ceramic Sample

Ceramic Emissivity

<table>
<thead>
<tr>
<th>Sample</th>
<th>Min</th>
<th>Max</th>
<th>Mean (µ)</th>
<th>S.D. (σ)</th>
<th>COV</th>
<th>Max/Min (σ/µ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 LA</td>
<td>20.2</td>
<td>45.5</td>
<td>30.8</td>
<td>9.3</td>
<td>30%</td>
<td>2.3</td>
</tr>
<tr>
<td>R2 #1</td>
<td>13.7</td>
<td>29.9</td>
<td>21.8</td>
<td>5.9</td>
<td>27%</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Very comparable to Round 1 LA measurements.
Results for 230Th Sample

230Th Emissivity

- Similar variability for observed for 230Th sample.
- Inconsistent with threshold hypothesis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Min</th>
<th>Max</th>
<th>Mean (μ)</th>
<th>S.D. (σ)</th>
<th>COV</th>
<th>Max/Min (σ/μ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2 #1</td>
<td>13.7</td>
<td>29.9</td>
<td>21.8</td>
<td>5.9</td>
<td>27%</td>
<td>2.2</td>
</tr>
<tr>
<td>R2 #2</td>
<td>63.2</td>
<td>106</td>
<td>88.0</td>
<td>14.6</td>
<td>17%</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Adjusted 230Th Sample Results

$\eta = 1$

Results are now a good match to certified emission value for F.

All measurements are now at or below certified value, suggesting that loss mechanisms are at work.
Window Gap as Loss Mechanism

- For a windowed counter some alphas are lost while traversing the gap below the entrance window.
- Variation in the gap dimension leads to a measurement specific efficiency loss.
- Participants were surveyed following analysis to determine the likely gap during measurement.
Post hoc Gap Analysis

Measured Efficiency of Windowed Counter vs. Entrance Gap

\[
f(gap) = 0.871 - 0.0290 \cdot gap
\]

<table>
<thead>
<tr>
<th>ID</th>
<th>Gap (mm)</th>
<th>(\eta_{est.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.5</td>
<td>83%</td>
</tr>
<tr>
<td>B</td>
<td>?</td>
<td>--</td>
</tr>
<tr>
<td>C</td>
<td>n/a</td>
<td>100%</td>
</tr>
<tr>
<td>D</td>
<td>2.3</td>
<td>84%</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>72%</td>
</tr>
<tr>
<td>F</td>
<td>n/a</td>
<td>100%</td>
</tr>
<tr>
<td>G</td>
<td>1.0</td>
<td>88%</td>
</tr>
<tr>
<td>H</td>
<td>n/a</td>
<td>100%</td>
</tr>
</tbody>
</table>

- Observed variability may largely be explained by losses in reported gaps.
- Measurement C (36% low) is still unexplained.
- Additional loss mechanisms are described in paper.
Conclusions

• Emissivity measurements for low alpha materials continue to demonstrate substantial variability between centers.
• Measurement of ultralow alpha materials is likely to be equally difficult.
• Entrance gap losses may explain much of the variation in these measurements.

• A suitable emissivity standard is still needed for proper calibration and monitoring of instruments.
Acknowledgements

The authors would like to acknowledge the generous donation of valuable alpha counter time by all the participating centers.

Thanks also to Mike Tucker, Keith Lepla and Barry Carroll for their assistance.